Stops the watchdog timer.
Namespace:
Quanser.HardwareAssembly: Quanser.Hardware.Hil (in Quanser.Hardware.Hil.dll)
Syntax
| Visual Basic (Declaration) |
|---|
Public Sub WatchdogStop |
| C# |
|---|
public void WatchdogStop() |
| Visual C++ |
|---|
public: void WatchdogStop() |
| JavaScript |
|---|
function watchdogStop(); |
Remarks
The WatchdogStop method stops the watchdog timer. The watchdog timer will no longer expire so the WatchdogReload()()() method need no longer be called. Stopping the watchdog timer does not clear the watchdog state if the watchdog has already expired. Use the WatchdogClear()()() method for this purpose.
Examples
This example configures a watchdog timer that will expire every 0.1 seconds and reset the
analog outputs to 0V and the digital outputs to tristate upon expiration.
Also create a task for performing real-time control that reads
four encoder channels every millisecond. The watchdog is reloaded every sampling
instant.
Exceptions are ignored for simplicity.
| C# | |
|---|---|
int [] encoderChannels = { 0, 1, 2, 3 };
double frequency = 1000;
int samples = 5000;
int samplesInBuffer = frequency;
int samplesToRead = 1;
double timeout = 0.1;
int index;
int [] counts = new int [samplesToRead * encoderChannels.Length];
int [] digitalChannels = new int [16];
Hil.DigitalState [] digitalStates = new Hil.DigitalState [digitalChannels.Length];
int [] analogChannels = new int [4];
double [] analogStates = new double [analogChannels.Length];
Hil.Task task;
for (index = 0; index < analogChannels.Length; index++) {
analogChannels[index] = index;
analogStates[index] = 0;
}
for (index = 0; index < digitalChannels.Length; index++) {
digitalChannels[index] = index;
digitalStates[index] = Hil.DigitalState.Tristate;
}
card.WatchdogSetAnalogExpirationState(analogChannels, analogStates);
card.WatchdogSetDigitalExpirationState(digitalChannels, digitalStates);
task = card.TaskCreateEncoderReader(samplesInBuffer, channels);
card.WatchdogStart(timeout);
task.Start(Hil.Clock.Hardware0, frequency, samples);
for (int index = 0; index < samples; index += samplesToRead) {
/*
Block (if necessary) waiting for next samplesToRead samples.
Returns every millisecond (since samplesToRead is 1 and frequency is 1000)
with the next sample.
*/
task.ReadEncoder(samplesToRead, buffer);
/* Reload watchdog before using counts for control */
card.WatchdogReload();
/* ... do control calculations and output motor torques using WriteAnalog(array<Int32>[]()[], array<Double>[]()[]) ... */
}
task.Stop();
card.WatchdogStop();
| |
| Visual Basic | |
|---|---|
Dim encoderChannels() As Integer = {0, 1, 2, 3}
Dim frequency As Double = 1000
Dim samples As Integer = 5000
Dim samplesInBuffer As Integer = frequency
Dim samplesToRead As Integer = 1
Dim timeout As Double = 0.1
Dim index As Integer
Dim counts(samplesToRead * encoderChannels.Length - 1) As Integer
Dim digitalChannels(15) As Integer
Dim digitalStates(digitalChannels.Length - 1) As Hil.DigitalState
Dim analogChannels(4) As Integer
Dim analogStates(analogChannels.Length - 1) As Double
Hil.Task task
For index = 0 To analogChannels.Length
analogChannels(index) = index
analogStates(index) = 0
Next
For index = 0 To digitalChannels.Length
digitalChannels(index) = index
digitalStates(index) = Hil.DigitalState.Tristate
Next
card.WatchdogSetAnalogExpirationState(analogChannels, analogStates)
card.WatchdogSetDigitalExpirationState(digitalChannels, digitalStates)
task = card.TaskCreateEncoderReader(samplesInBuffer, channels)
card.WatchdogStart(timeout)
task.Start(Hil.Clock.Hardware0, frequency, samples)
For index = 0 To samples Step samplesToRead
' Block (if necessary) waiting for next samplesToRead samples.
' Returns every millisecond (since samplesToRead is 1 and frequency is 1000)
' with the next sample.
task.ReadEncoder(samplesToRead, buffer)
' Reload watchdog before using counts for control
card.WatchdogReload()
' ... do control calculations and output motor torques using WriteAnalog(array<Int32>[]()[], array<Double>[]()[]) ...
Next
task.Stop()
card.WatchdogStop()
| |
| Visual C++ | |
|---|---|
array<int>^ encoderChannels = { 0, 1, 2, 3 };
double frequency = 1000;
int samples = 5000;
int samplesInBuffer = frequency;
int samplesToRead = 1;
double timeout = 0.1;
int index;
array<int>^ counts = gcnew array<int>(samplesToRead * encoderChannels->Length);
array<int>^ digitalChannels = gcnew array<int>(16);
array<Hil::DigitalState>^ digitalStates = gcnew array<Hil::DigitalState>(digitalChannels->Length);
array<int>^ analogChannels = gcnew array<int>(4);
array<double>^ analogStates = gcnew array<double>(analogChannels->Length);
Hil::Task^ task;
for (index = 0; index < analogChannels->Length; index++) {
analogChannels[index] = index;
analogStates[index] = 0;
}
for (index = 0; index < digitalChannels->Length; index++) {
digitalChannels[index] = index;
digitalStates[index] = Hil::DigitalState::Tristate;
}
card->WatchdogSetAnalogExpirationState(analogChannels, analogStates);
card->WatchdogSetDigitalExpirationState(digitalChannels, digitalStates);
task = card->TaskCreateEncoderReader(samplesInBuffer, channels);
card->WatchdogStart(timeout);
task->Start(Hil::Clock::Hardware0, frequency, samples);
for (int index = 0; index < samples; index += samplesToRead) {
/*
Block (if necessary) waiting for next samplesToRead samples.
Returns every millisecond (since samplesToRead is 1 and frequency is 1000)
with the next sample.
*/
task->ReadEncoder(samplesToRead, buffer);
/* Reload watchdog before using counts for control */
card->WatchdogReload();
/* ... do control calculations and output motor torques using WriteAnalog(array<Int32>[]()[], array<Double>[]()[]) ... */
}
task->Stop();
card->WatchdogStop();
| |
Exceptions
| Exception | Condition |
|---|---|
| Quanser.Hardware..::.HilException | If the watchdog cannot be stopped then an exception is thrown. This situtation typically arises if the board does not support a watchdog timer, or the hardware resources required are in use by a task. |